高通收购Nuvia或挑战苹果和英特尔

高通周三宣布,将斥资14亿美元收购由苹果退伍军人创立的CPU设计师Nuvia,并计划将其技术应用于其智能手机,笔记本电脑和汽车处理器。这项交易标志着高通公司在与竞争对手苹果和监管机构进行了数年备受瞩目的专利许可诉讼后,正专注于重新确立其在芯片性能方面的领先地位。
随着Nuvia的加入,高通将有能力在CPU能力和性能设计方面与Apple和I​​ntel正面竞争。同时,高通公司本月宣布,现任总裁兼芯片事业部负责人克里斯蒂亚诺·阿蒙(Cristiano Amon)将自6月30日起卸任现任首席执行官史蒂芬·莫伦科普夫(Steven Mollenkopf)。
阿蒙(Amon)在一份声明中解释说:“有了Nuvia,再加上我们行业领先的图形和人工智能,计算性能将提高到一个全新的水平,并且将为多个行业的产品添加更多的新功能。 “ Nuvia由三位前负责苹果公司iPhone芯片的半导体高管创建,并且一直致力于CPU内核设计的定制版本。
该公司表示,该设计将用于服务器芯片。但是,高通公司计划广泛使用Nuvia处理器,称这些处理器将为诸如旗舰智能手机,下一代笔记本电脑,信息娱乐系统和驾驶员辅助系统之类的应用程序提供动力。
尽管传统上笔记本电脑制造商一直在向英特尔寻求处理器,但高通公司多年来一直向三星电子和微软等公司提供PC芯片。微软首席产品官Panos Panay(PanosPanay)在有关交易的声明中说:“很高兴看到Nuvia加入高通团队。
展望未来,我们将看到不可思议的机会。它使我们的客户在整个Windows生态系统中都具有强大的功能。
”这项交易意义重大,因为它可能有助于减少高通对英国芯片设计公司Arm的依赖,该公司由高通的竞争对手Nvidia资助。 400亿美元的收购。
高通公司目前的芯片大多使用直接从Arm获得许可的计算内核,而Nuvia的内核使用Arm的底层体系结构,但它们都是定制设计。对于高通公司而言,使用更多定制的核心设计(苹果公司已采取类似措施)可能会在短期内降低某些Arms的许可成本,并使其更容易转向竞争对手。
长期来看。尽管高通和苹果已经就高通的专利使用费解决了争端,但努维亚和苹果一直在争论。
苹果在2019年起诉Nuvia首席执行官杰拉德·威廉姆斯三世(Gerard Williams III),指责后者在仍受苹果雇用的情况下为Nuvia招募苹果员工。苹果公司本身并未起诉Nuvia,也未指控任何盗窃知识产权的行为,该案的审判日期尚未确定。

公司: 深圳市捷比信实业有限公司

电话: 0755-29796190

邮箱: momo@jepsun.com

产品经理: 李经理

QQ: 2215069954

地址: 深圳市宝安区翻身路富源大厦1栋7楼

微信二维码

更多资讯

获取最新公司新闻和行业资料。

  • N+P互补对MOS管的设计优化与挑战分析 设计中的关键参数考量在实际电路设计中,N+P互补对MOS管的性能不仅取决于其基本结构,还受到多种因素影响。以下为关键设计要素:1. 尺寸匹配(宽长比优化)为了实现对称的传输特性,需合理设置NMOS与PMOS的宽长比(W/L)。通...
  • 深入解析射电收发逻辑电路(GTL)的信号处理机制与设计挑战 射电收发逻辑电路(GTL)的信号处理流程射电收发逻辑电路(GTL)不仅承担信号的发送与接收任务,更集成了复杂的信号处理功能。从基带信号生成到射频调制,再到信道均衡与解码,整个流程依赖于精密的数字模拟混合设计。...
  • 深入解读:30V与100V N沟道MOS管在电源管理中的技术优势与挑战 30V vs 100V N沟道MOS管:技术优势与工程实践随着电子设备向小型化、高效化发展,合理选择N沟道MOS管成为电源设计的关键环节。本文从技术参数、实际应用和可靠性角度,深入剖析30V与100V等级器件的核心差异。1. 30V N沟道MOS管的技...
  • double sum = 0.0; for(int i = 0; i < n; i++) { if(resistors[i] > 0) { sum += 1.0 / resistors[i]; 在C语言中计算并联电阻的总电阻是一个常见的应用问题,它涉及到基本的物理知识与编程技巧的结合。并联电路中的总电阻可以通过所有并联电阻倒数的和的倒数来计算。首先,我们需要定义一个函数来处理这一计算过程。例如...
  • 霍尼韦尔SZL-WL-A与GCP-31A:高性能行程开关的应用与特点 霍尼韦尔作为全球领先的自动化控制系统制造商之一,其产品广泛应用于工业、商业及住宅等多个领域。其中,行程开关是用于检测机械运动位置的一种重要元件,能够实现自动化控制系统的精准操作。型号为SZL-WL-A的行程开关和...
  • 国产射频连接器品牌如何应对高频时代挑战? 国产射频连接器品牌如何应对高频时代挑战?在高频通信时代,射频连接器不仅是物理连接的桥梁,更是信号完整性的守护者。面对5G、6G、毫米波雷达、卫星互联网等新兴应用对连接器提出更高要求,国产射频连接器品牌正在通...
  • 五向开关DC12(V)0.05(A):应用与技术参数 五向开关DC12(V)0.05(A)是一种电子元件,它在电路设计和设备控制中发挥着重要作用。这种开关通常用于需要控制多个方向或功能的应用场景,例如遥控器、游戏控制器或是小型电子设备的导航按钮等。五向开关能够提供上、...
  • 圆柱晶圆高压电阻的设计挑战与工程解决方案 圆柱晶圆高压电阻的结构特点与可靠性保障圆柱晶圆高压电阻专为高电压、大功率应用场景设计,常见于电力电子、高压电源、工业变频器及新能源汽车充电系统中。其独特结构通过将电阻体集成于圆柱形晶圆基底上,实现优异...
  • 聚鼎ASMBJ瞬态抑制二极管:高效应对汽车电子瞬态过压挑战 聚鼎ASMBJ瞬态抑制二极管:高效应对汽车电子瞬态过压挑战随着新能源汽车与智能驾驶技术的快速发展,车载电子系统的敏感性显著提升,对瞬态过压保护提出了更高要求。聚鼎科技全新推出的ASMBJ系列瞬态抑制二极管(TVS),以...
  • 逻辑IC设计中CMOS门电路的优化与挑战 CMOS逻辑门在逻辑IC设计中的关键作用逻辑IC(Integrated Circuit)是实现复杂数字功能的基础,其中CMOS门电路因其卓越的性能表现成为首选方案。从简单的门电路到复杂的微处理器,均依赖于高度优化的CMOS结构。1. 功耗与速度的平衡...
  • 普通电阻作为吸收负载选型原则,假设吸收功率300mW 普通电阻作为吸收负载时,选型原则如下:1、根据负载功率选择电阻值在选择普通电阻时,需要根据负载功率来选择合适的电阻值。通常情况下,吸收负载需要选择大于或等于负载功率的电阻值。例如,如果负载功率为300mW,则...
  • LTE/NB-IoT物联网天线设计挑战与优化策略 LTE/NB-IoT天线面临的工程挑战随着5G时代的到来,窄带物联网(NB-IoT)和4G LTE-M技术成为运营商主推的物联网接入方式。然而,这些技术对天线性能提出了更高要求——尤其是在尺寸受限、多频段共存、复杂电磁环境下保持稳定通信...
  • 海湾地区数字卫星广播的挑战与应对策略 海湾地区数字卫星广播的挑战与应对策略尽管数字卫星广播在海湾地区取得了显著进展,但在实际运营中仍面临多重挑战。如何有效应对这些问题,是保障该技术可持续发展的关键。1. 频谱资源紧张与干扰问题随着越来越多的媒...
  • 线性稳压器在汽车电子中的优势与挑战解析 线性稳压器在车用环境下的独特价值尽管开关稳压器在能效方面具有明显优势,但线性稳压器(尤其是低压差线性稳压器,LDO)在汽车电子系统中依然占据重要地位。其核心优势在于稳定性、低噪声和设计简便性。1. 极低输出噪...
  • 石英晶体与石英晶体振荡器的区别和应用 石英晶体与石英晶体振荡器是电子工程中常见的元件,它们在电子设备中扮演着至关重要的角色,尤其是在时钟信号产生、频率控制等方面。石英晶体是一种压电材料,当受到电场作用时,会变形;反之,当它受到机械压力时,...
  • 深入探讨 GaAs FET 偏压产生器的设计挑战与解决方案 GaAs FET 偏压产生器面临的主要设计挑战尽管GaAs FET具备出色的高频性能,但其对偏压条件要求严苛,使得偏压产生器的设计成为系统集成的关键难点。1. 电压精度与动态响应要求在多级放大器或可变增益放大器(VGA)中,偏压需要...
  • 三相栅极驱动器在电机控制中的应用与设计挑战 三相栅极驱动器的技术定位三相栅极驱动器(3-Phase Gate Driver)是电力电子系统中的核心组件,广泛应用于变频器(VFD)、伺服电机、新能源汽车驱动系统及工业电机控制中。其主要功能是将微控制器输出的低功率逻辑信号转换为...
  • 深入探讨输出级周边驱动器的设计挑战与优化策略 输出级周边驱动器设计中的关键技术难题尽管输出级周边驱动器在电力电子系统中不可或缺,但其设计面临诸多挑战。从布局布线到热管理,每一个环节都需精心考量。1. 驱动能力与功耗的平衡驱动器需要提供足够的栅极电流以...
  • 双极晶体管在现代智能汽车中的应用挑战与优化策略 双极晶体管在智能汽车中的角色演变随着电动汽车(EV)和智能网联汽车的发展,传统双极晶体管虽面临来自MOSFET和IGBT的激烈竞争,但在某些特定场景仍具不可替代性。其在高可靠性、成本敏感型设计中依然占据重要地位。应用...
  • 原装行货霍尼韦尔SZL-WLC-A行程开关:高性能与可靠性的结合 原装行货霍尼韦尔SZL-WLC-A行程开关是一种高品质的控制设备,广泛应用于各种工业自动化领域。该行程开关具有高精度、耐用性强的特点,能够满足在恶劣环境下的工作需求。其设计紧凑,安装简便,适用于多种机械装置的位置...